Prime Factorisation, HCFs And LCMs

HCF = Highest Common Factor. LCM = Lowest Common Multiple.Patrons are reminded that it is *always* preferable to factories a number into its prime factor form. For example $3960 \Rightarrow \text{BAD},$ $2^3 \times 3^2 \times 5 \times 11 \Rightarrow \text{GOOD}.$

1. Express the following numbers as a product of primes

(a)	60.	$2^2 \times 3 \times 5$
(b)	81.	3^4
(c)	53.	53
(d)	102.	$\fbox{2\times3\times17}$
(e)	72.	$2^3 \times 3^2$
(f)	1485.	$3^3 \times 5 \times 11$
(g)	605.	$5 imes 11^2$
(h)	11375.	$5^3 \times 7 \times 13$
(i)	230.	$\fbox{2 \times 5 \times 23}$
(j)	8 856.	$\boxed{2^3\times3^3\times41}$
(k)	91500.	$\fbox{2^2 \times 3 \times 5^3 \times 61}$
(l)	59290.	$\fbox{2 \times 5 \times 7^2 \times 11^2}$

2. Find the smallest integer that 11340 needs to be multiplied by to make a perfect square.

3. Find the smallest integer that 38808 needs to be multiplied by to make a perfect cube.

1 00

4. Find the HCF and LCM of 25 and 30.	$HCF = 5, LCM = 2 \times 3 \times 5^2 = 150$		
5. Find the HCF and LCM of 100 and 110.	HCF = $2 \times 5 = 10$, LCM = $2^2 \times 5^2 \times 11 = 1100$		
6. Find the HCF and LCM of 72 and 90.	HCF = $2 \times 3^2 = 18$, LCM = $2^3 \times 3^2 \times 5 = 360$		
7. Find the HCF and LCM of $2^3 \times 3 \times 7$ and $3^2 \times 5 \times 7$. HCF = $3 \times 7 = 21$, LCM = $2^3 \times 3^2 \times 5 \times 7 = 2520$			
8. Find the HCF and LCM of $2^2 \times 5^3 \times 11^2$ and $3 \times 5^4 \times 7^2$. HCF = $5^3 = 125$, LCM = $2^2 \times 3 \times 5^4 \times 7^2 \times 11^2 = 44467500$			

- 9. (Thanks to JM for this gem.) The LCM of two numbers is 84. If one of the numbers is 28, find all possible values of the other number.
- 10. (Thanks, again, to JM for this gem.) Find the smallest integer greater than 1 with the property that division by each of 3, 4 and 5 yields a remainder of 1. $\hfill \Box$
- 11. (Maclaurin) How many positive integers leave a remainder of 31 when divided into 2011? $\hfill\square$

Algebraic Problems

- 1. Find the HCF and LCM of $3x^2y^7$ and $12x^4y$.
- 2. Find the HCF and LCM of $6xy^7z$ and $8x^4z^2$.
- 3. Find the HCF and LCM of 600xyz and $750x^2z^3$.
- 4. Combine into a single fraction $\frac{3}{2x^2y} + \frac{4}{5xy^4}$.

5. Combine into a single fraction $\frac{1}{5x^3yz^2} + 3 - \frac{2}{3x^2z^4}$.